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Abstract: Throughout the world, brain tumors have become a medical priority as more people suffer from this malignant 

disease worldwide. In the field of computer science, researchers have been studying to utilize MRI scans to its fullest potential, in 

recognizing signs of tumors early on, and utilizing computers and convolutional neural networks to process massive amounts of 

patient data at once in hopes of saving lives. This investigation finds out the specifications of visualization of MRI scans and how 

filters and layers are used to identify lethal tumors in the brain. For one of our main methods, a pre-trained model to improve 

accuracy was used - the Xception model. This showed a contrast between previous existing models as those fully connected 

layers were added to the back of existing ones. Our main proposed model of Xception + Bidirectional GRU had the highest 

accuracy of 82% out of 7 different models. In our proposed model, Convolutional layers were used to extract specific features of 

an image and process other similar images in the same way. By using 3 layers of Convolution, Activation, and Max pooling, we 

saw the networks focus on the actual tumors in the brain by distinguishing patterns in images and focusing on that area to create 

visual representations. Principal components of this research were the ability to visualize abnormal features of brain scan images 

to filter out and layer regions to bring attention to tumors in the brain. 
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1. Introduction 

1.1. Background 

Cancer has become a medical phenomenon that 

contributes to the highest death rates around the world. 

Incidence rates remain consistently high in high-income 

countries (HIC), but the prevalence of risk factors including 

obesity, smoking, and physical inactivity has led to low and 

middle-income countries (LMIC) to have high rates of cancer 

as well [1]. As a result of this increase, cancer has become a 

known threat. However, brain cancer has been and is 

considered one of the most lethal and malignant cancers in 

people of all ages because the nervous system works directly 

with the brain to control the entirety of bodily function [2]. 

Out of the various types of brain cancer, pituitary tumor, 

meningioma tumor, and glioma tumors are focused 

throughout this article. 

Approximately 238,000 new cases of brain and central 

nervous system cancer are diagnosed annually [3]. Although 

brain and nervous system cancers account for 3% of all 

cancers in the world, they have a mortality rate of 3.4 per 

100,000 people [4]. Despite having a low overall mortality 

rate, these tumors are also one of the most common tumors in 

adolescence (21%) and have become the first leading cause 

of cancer deaths for males aged under 40 years and females 

aged under 20 years [5]. 

As brain cancer becomes a prevalent issue around the 

globe, methods of receiving faster and more accurate 

identification have come into question. Magnetic Resonance 

Imaging (MRI) scans have been long used to look at 

structures inside human bodies. However, new fields in 

medical science have built neural networks to train artificial 

intelligence [6]. Researchers at NYU Grossman School of 

Medicine in collaboration with Facebook AI were able to 

significantly analyze to what extent AI can accelerate MRI 

scanning and processing. They were able to remove roughly 

three-fourths of raw data and generate fast MRI scans that 

matched the standard, slower MRI process. As the AI MRI 

scans required up to four times less data than the standard, 
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patient imaging was much faster and as a result spent less 

time in the actual MRI machines. Through this study, 

researchers were able to underscore the clear benefits of 

investing in artificial intelligence in the medical field 

regarding MRI scans. 

Although mortality rates of cancer originating from the 

brain are relatively low, mortality rates caused by metastasis 

(spread of cancer to other body parts) to the brain is high. 

This is an area of concern as the brain is one of the body’s 

organs where metastasis occurs at a frequent rate. As 

metastasis has limited effective treatment and is difficult to 

identify and diagnose, patients’ median survival rates are 

only a few months [7]. 

 

Figure 1. 5-year relatives survival rate for brain and other nervous system 

cancers. 

Figure 1 using a data set from 

(https://seer.cancer.gov/statfacts/html/brain.html), a graph 

was created comparing the 5-year survival rate (SEER 9) for 

brain and other nervous system cancers, with observed 

statistics versus the modeled trend. For years 2014-2018, 

observed data was not available, but the predicted model 

trends were given. 

1.2. Objective 

Our main objectives are to (i) adopt and incorporate deep 

learning techniques with pre trained Convolutional Neural 

Network models with fine tuning to fully quantify and 

classify brain tumor images, (ii) deliver them in a functioning 

high level of accuracy, (iii) bolster and underscore the 

efficiency of our method compared to traditional transfer 

learning and propagation neural network techniques, (iv) 

justify the use of 4 classifications: meningioma, glioma, 

pituitary tumors, and normal MRI scans compared to the 

typical 3 classifications, and (v) explore the usage of 

heatmaps in MRI scan images to portray anomaly sections of 

the brain. This paper will now explore contrasting related 

works, our material and methods used, results, discussions, 

and conclusions. 

2. Related Works 

Swato et al., have used a public CE-MRI data set (Cheng, 

2017) to train convolutional neural networks for specific 

types of brain cancers. This article used a pre-trained deep 

CNN model and a block-wise fine-tuning strategy to 

evaluate CE-MRI datasets. They were able to achieve an 

average accuracy of 94.82% under five-fold 

cross-validation and used traditional machine learning 

incorporated with deep learning methods using CNNs. They 

classified three types of brain tumors: meningioma, glioma, 

and pituitary tumors [8]. 

Deepak et al., used a pre-trained GoogLeNet to identify 

and analyze MRI images of the brain. This experiment 

used a similar five-fold cross-validation process from an 

MRI dataset on figshare, outputting an accuracy of 98%. 

This paper specifically evaluated the system with fewer 

training samples and implied transfer learning as a useful 

technique in limited medical imaging. They classified 

three types of brain tumors: meningioma, glioma, and 

pituitary tumors [9]. 

Sumitra et al., suggested Neural Network techniques for 

classification of MRI of the human brain. The PCA and 

Neural Network technique utilized dimensionality reduction, 

feature extraction, and classification. The Back Propagation 

Neural Network classifier classified subjects as normal, 

benign, and malignant images. The accuracy for this method 

was ranging from 100% to 73%. BPN was used to train, test, 

and classify tumors for its fast-training speed [10]. 

Seetha et al., used Fuzzy C Means based segmentation, 

texture, and shape feature extractions. They further used 

SVM and DNN based classifications to result in tumor or 

normal brain images. CNN used a deep learning method, 

using image net database pre-trained models. This method 

showed the training accuracy to be 97.5% [11]. 

Afshar et al., found CNNs to require large amounts of data, 

therefore switching to capsule networking that proposed to 

revolutionize deep learning. Capsule networks were found to 

be robust to rotation and affine transformation and required 

less training data, specifically targeting CNN’s flaws. The 

accuracy found for CapsNet imaging was 78%, while CNN’s 

accuracy imaging was at 61.97%. Therefore, the Capsule 

networks efficiently overcame the shortcomings of CNN 

[12]. 

3. Materials & Methods 

3.1. Data Description 

Data set used involved two sections: testing and training. 

With 4 classifications, there were glioma tumor, meningioma 

tumor, pituitary tumor, and no tumor. The testing files 

contained 100 files for glioma tumor, 115 files for 

meningioma tumor, 74 files for pituitary tumors, and 105 

files for no tumors. For the training set, glioma tumor carried 

826 files, meningioma tumor carried 822 files, pituitary 

tumor had 827 files, and no tumor carried 395 files. Overall, 

3264 files were used in our data set. This data set can be 

analyzed and credited in this link: 

https://www.kaggle.com/sartajbhuvaji/brain-tumor-classificat

ion-mri?select=Training [13]. 
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Figure 2. Data visualization from the given dataset, downloaded from Kaggle website. 

3.2. Data Preprocessing 

Since the size of the data is relatively insufficient to train a 

deep learning model, we had to multiply the data before 

putting it into the model and running it. For efficient data 

augmentation, we used Keras' ImageDataGenerator function. 

Through ImageDataGenerator, shear range, zoom range, 

horizontal flip, vertical flip, rotation range, width shift range, 

height shift range, etc. can be adjusted. All images were 

divided by 255 for normalization, and 30% of the training set 

was used as the validation set. 

3.3. Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) consists of a 

convolution layer, a pooling layer, and a fully connected layer. 

When CNN gets an input image, it first creates a convolution 

layer through a filter and produces a feature map, which is 

called a kernel. After that, the pooling layer reduces the size 

of the feature map by calculating the average or maximum 

value of the feature map. These are called max pooling and 

average pooling, respectively. A fully connected layer is the 

same as a deep neural network; the main purpose of this layer 

is to classify objects with activation functions. For 

multi-class classification, the softmax function is used as the 

activation function; for binary classification, the sigmoid 

function is mainly used [14]. 

3.4. Pre-trained CNN 

To extract features from images, we used pre-trained CNN 

models such as VGG16, VGG19, MobileNet, 

Inception-Resnet_v2, and Inception_v3. These pre-trained 

models can be downloaded from Keras and were pre-trained 

on a dataset named ImageNet. Because CNN layers such as 

pooling and conv layers are properly arranged and 

pre-trained with a large image set in advance, the accuracy is 

relatively higher than that of training through a general CNN 

model. In particular, these models extract features of images 

to be employed by the user, and the layers to be classified 

after they are defined by the user [15]. 
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Figure 3. Overall architecture of the CNN. 

 

Figure 4. Overall architecture of the GRU. 

3.5. Gated Recurrent Units (GRU) 

z� � σ�W��h�
�, x�� � b��            (1) 

r� � σ�W��h�
�, x�� � b��            (2) 

h�� � tanh�W��r��h�
�, x�� � b��        (3) 

h� � �1 � z���h�
� � z��h��          (4) 

In the case of LSTM, there were three gates: a forget gate, 

an input gate, and an output gate, but in the GRU, only two 

gates are used: a reset gate and an update gate. In addition, 

the cell state and hidden state are combined to express a 

single hidden state. The formula to find the reset gate 

corresponds to Equation (2) in the formula above. This is a 

method used to obtain the hidden state of the previous time 

and the x of the current time by applying the activation 

function sigmoid. The result will have a value between 0 and 

1, which can be interpreted as information about how much 

to use the value of the previous hidden state. The value from 

the reset gate is not used as it is but is reused by expression 

(3). In equation (3), it is calculated by multiplying the hidden 

state of the previous time by the reset gate. The update gate 

plays a similar role to the input and forget gates of LSTM, 

and the key is to obtain the ratio of how much past and 

present information will be reflected. As a result of Equation 

(1), z reflects how much current information will be used. 

And (1-z) reflects how much to use for past information. So, 

each role can be viewed as an input and forget gate of the 

LSTM, and finally, the hidden state of the output value at the 

present time can be obtained through Equation (4) [16]. 

3.6. Bidirectional GRU 

A sequence processing model called a Bidirectional GRU 

(BiGRU) consists of two GRUs. One takes the input from a 
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forward direction while the other takes the input in a 

backward direction. It utilizes the bidirectional recurrent 

neural networks that only use input and forget gates in the 

entire process [17]. 

3.7. Grad CAM 

After classifying the pre-trained CNN models to obtain 

accuracy, Gradient-Weighted Class Activation Map 

(Grad-CAM) was used to check which part had abnormalities. 

Grad-CAM provides the cause for the classification result, 

and uses Global Average Pooling (GAP), instead of the fully 

connected layer used before final classification in the existing 

CNN model. It is shown through the heat map; the purple 

part indicates normal while the red indicates abnormal parts 

[18]. 

3.8. Proposed Model 

To improve classification accuracy, the Xception model - 

one of the pre-trained models - was used. In addition, 

bidirectional GRU was used for more accurate classification, 

contrasting with the existing models (in which a fully 

connected layer is added at the back of the model). 

Furthermore, a dense layer with 512 nodes was added as well 

as a dropout layer to prevent overfitting. The optimizer used 

nadam, the learning rate set at 0.001, and early stopping was 

set to stop training when the validation loss fell. 

4. Results 

4.1. Visualization of Convolution Layers 

The first layer of CNN is to gather a collection of different 

types of edge detectors. Almost all of the information in the 

initial photo is preserved during this stage of activation. As 

the layers move up, activation becomes more abstract and 

visually difficult to understand. The representation of the 

upper layers shows less information about the visual content 

of the image but more information about the class of the 

image. In the first layer, all filters are active on the input 

image, but as layers move up, the filters become inactive. 

This means that the pattern encoded in the filter did not 

appear in the input image. 

This shows some of the important features that deep neural 

networks typically exhibit in learned representations. The 

features extracted from the layer become more and more 

abstract along each depth of the layer. The activation of 

higher floors results in less and less visual information about 

a particular input, and more of a list of targets. Deep neural 

networks behave like a pipeline of information cleansing 

over the source data being inputted. Repetitive 

transformation filters out irrelevant information, and useful 

information is highlighted and improved. 
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Figure 5. Visualization of the convolution layers; shallow layer to deeper layer. 

4.2. Visualization of Pooling and Activation Layers 

Convolutional layers were used to extract core features of 

an image and further use these distinct features to identify 

images that contained features of the same sort. In this run, 

we used 3 layers of CNN including Convolution, Activation, 

and Max Pooling. With these three layers, we started to see 

the network focus on regions such as the meningioma tumor 

in the actual brain. These types of features would allow the 

CNN through deep learning to differentiate between 

meningioma, pituitary, and glioma tumors. These neural 

networks are able to distinguish patterns in images that 

become akin to what the human eye can do, in focusing on 

one area and region to create a visual representation. 

 

Figure 6. Visualization of the convolution layers; shallow layer to deeper layer. 
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4.3. Accuracy of Proposed Model 

 

Figure 7. Graph for accuracy comparison; proposed model and other deep learning models. 

In our main proposed model of Xception + Bidirectional 

GRU, the accuracy was the highest with an accuracy of 

82.00%. The model with the second highest accuracy was 

Xception with a 78.00% accuracy. In comparison, VGG 16 

and VGG 19 were around the 71.00% accuracy range. The 

lowest model accuracy was 44.70%, coming from MobileNet. 

Inception_V3 and DenseNet had similar accuracy 

percentages with 74.00% and 73.50% respectively. 

  

Figure 8. Graph for loss and accuracy from training and validation sets. 

Looking at the two graphs above, it can be seen that during 

model training, the accuracy of the training set and the 

accuracy of the validation set increased almost continuously, 

reaching about 97.5%. It is shown that the loss of the training 

set and the loss of the validation set also decreased 

continuously during model training. However, it was found 

that overfitting occurred because the accuracy in the actual 

test set was about 82%. 

As shown by the red heat mapping in this brain scan, it 

accurately aligns with the part of the meningioma tumor, the 

white oval shaped tumor. This shows the validity in this 

proposed model used in utilizing heat maps. 
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Figure 9. Result of grad-CAM: meningioma tumor. 

 

Figure 10. Result of grad-CAM: glioma tumor. 

In this figure, the glioma tumor can be seen as the white 

area, which the heat map was in the vicinity of. As this figure 

does not show the complete strength of the heat maps, this 

was one example of a weakness in this proposed model. 

 

Figure 11. Result of grad-CAM: pituitary tumor. 

In this figure, the heat map centered in the area towards the 

pituitary gland, showing the efficacy of this proposed model. 

Although the gland itself is not opaquely visible, the heat 

map shows the suggested region. 

5. Discussion 

5.1. Principal Finding 

A principal component to this research was the 

visualization of abnormal and malignant aspects in MRI 

Brain scans that was not seen in previous related works. By 

using heat maps to visualize the specific areas of tumors in 

the brain, comparisons can be drawn to the related works 

“Brain tumor classification using deep CNN features via 

transfer learning” and “Brain tumor classification using back 

propagation neural network”. Although these related works 

used similar techniques and applications to show results of 

neural networking, they lacked the element of heat mapping 

and visualization that brings this research to another layer. 

This research was able to imply and underscore the similar 

steps of Convolutional Neural Networking to that of the 

human eye; As the features extracted from layers improved 

and became more abstract, the activation of higher floors 

became less about visual information and more about a list of 

targets. 

5.2. Limitation 

Although this research was able to find key principal 

components of CNNs, there were also some limitations. One 

of these came from an accuracy that was not able to surpass 

90%. This is seen as a limitation as it does not show reliable 

data throughout this neural network. A second limitation 

came from the fact that we used the simplest classification to 

network; in the computer vision field, classification, object 

detection, and segmentation are often 3 key factors, but we 

were only able to use classification as our data factor. 

Segmentation methods such as Unet and FCN (Fully 

Convolutional Network) were not utilized because we were 

unable to use a mask. 

6. Conclusion 

Through continued analysis and research, we concluded 

that neural networking did follow a pattern that showed 

visualization of the human eye. As more layers of CNN were 

added, filters became inactive, and patterns encoded thus did 

not appear in input images. This showed that important 

features of deep neural networking exhibited learned 

representations. By using 3 layers of CNN, Convolution, 

Activation, and Max Pooling, these layers were able to focus 

on the actual regions of tumors in the brain. The proposed 

model of Xception + Bidirectional GRU thus had the highest 

accuracy of 82%. 

Features and layers were an important step in this study as 

we found out activation of higher floors focused on making 

visual information a target-based system. However, further 
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study is necessary to prove this data to be valid and reliable, 

as limitations were that accuracy was less than 90% and we 

were only able to utilize classification as our data factor. In 

further studies, it is important to use a mask that would allow 

us to use segmentation and increase the accuracy of our 

proposed models to over 90%. 
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